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ABSTRACT
Background  Genetics is an important contributor 
to autism spectrum disorder (ASD). Clinical guidelines 
endorse genetic testing in the medical workup of ASD, 
particularly tests that use whole genome sequencing 
(WGS) technology. While the clinical utility of genetic 
testing in ASD is demonstrated, the breadth of impact 
of results can depend on the variant and/or gene being 
reported.
Methods  We reviewed research results returned to 
families enrolled in our ASD WGS study between 2012 
and 2023. For significant results, we grouped the 
outcome of each genetic finding into three outcome 
categories: (1) genetic diagnosis, (2) counselling benefits 
and (3) support to family.
Results  Out of 202 families who received genome 
sequencing results, 100 had at least one clinically 
relevant finding related to ASD. With detailed examples, 
we show that all significant results led to a genetic 
diagnosis and counselling benefits.
Conclusion  Our findings show the relevance of 
genome sequencing in ASD and provide illustrative 
examples of how the information can be used.

INTRODUCTION
Autism spectrum disorder (ASD or autism) is 
a heterogeneous condition diagnosed through 
behavioural assessments focusing on social 
communication skills and restrictive or repetitive 
behaviours. The prevalence varies depending on 
ascertainment and assessment1; in Canada, it is seen 
in 1 out of 66 children, and in 1 out of 100 individ-
uals globally.1 2 The underlying aetiology of autism 
is complex, but genetics is a contributor.3 Approxi-
mately 100 genes have been implicated in ASD and 
are used in genetic testing, and many of these are 
associated with known genetic conditions.4–6

Professional societies, including the American 
Academy of Child and Adolescent Psychiatry, the 
American College of Medical Genetics (ACMG) 
and the Canadian College of Medical Geneticists 
(CCMG), endorse genetic testing in the medical 
workup of children diagnosed with neurode-
velopmental disorders (NDDs), which include 
autism.7–9 As a first-tier diagnostic test, the ACMG 
and CCMG recommend chromosomal microarray 

analysis (CMA) to identify copy number variants. 
Additional genetic testing, including metabolic 
screening, fragile X testing and targeted gene tests/
panels, are also suggested for individuals with a high 
suspicion of a genetic aetiology.8 9 Now, exome and 
whole genome sequencing (WGS) in NDD is the 
standard due to increased clinical testing yields.10 11 
WGS uses next-generation sequencing technology 
to determine the DNA sequence of an individual’s 
entire genetic material, enabling the identification 
of variants across coding and non-coding regions of 
the genome. The application of WGS in autism has a 
diagnostic yield ranging from 8% to 14%,5 12 13 and 
these values increase considering individuals with 
profound autism with medical complications.5 10 11

The clinical utility of a genetic test, according to 
the ACMG, demonstrates an impact on ‘therapeutic 
management, implications for prognosis, health and 
psychological benefits to patients and their rela-
tives, and a broad economic impact on health-care 
systems’.14 The benefit of uncovering a genetic aeti-
ology in a NDD population is well documented and 
include informing medical management, providing 
gene-specific or condition-specific information, 
guiding genetic counselling and connecting families 
to tailored supports and research opportunities.15 16 
For autism specifically, studies have demonstrated 
that genetic testing has informed screening for 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ The clinical utility of genome sequencing in 
autism spectrum disorder (ASD) is documented, 
but the uptake and perceived benefit is 
sometimes questioned due to a lack of 
examples of impact.

WHAT THIS STUDY ADDS
	⇒ One hundred real-life examples of the 
downstream impact of receiving a genetic result 
from genome sequencing based on the gene 
involved in ASD.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ This study provides data on how genomic 
information may be used by families, healthcare 
providers and researchers to better understand 
ASD.
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co-occurring conditions, prompted/altered medical interven-
tions, and ended the diagnostic odyssey (avoiding multiple inves-
tigations) for a subset of patients.11 17–19

While the clinical utility of genetic diagnosis is evident, its 
uptake for patients with autism can be limited.20 Emerging 
data on the perspectives of some autistic adults suggest concern 
related to genetic testing and autonomy.21 Moreover, some 
healthcare professionals and families have expressed scepticism 
regarding the practical benefits of understanding the genetic aeti-
ology of autism.20 22 Clinicians caring for individuals with autism 
reported a need to learn about the clinical utility of genetic 
testing and to better understand the genetics of autism.3 23 These 
different perspectives highlight the need to demonstrate more 
clearly the relevance of genetic testing to effectively support 
healthcare providers in their decisions to order such testing 
for medical patients with autism and offer evidence for health 
insurance coverage for some families.24 Additionally, more infor-
mation will help families considering genomic testing to make 
informed decisions. Here, we present the results from a longitu-
dinal WGS project to showcase the potential impact of genomic 
testing in individuals with autism and their families and highlight 
their perspectives. We also discuss our experience of how the 
impact of delivering genomic results can depend on the variant 
and/or gene involved, the stage of life of the participants and 
new scientific advances.

METHODS
Study cohort
Participants are enrolled in the Autism Speaks Genomics of 
Autism (MSSNG) research study across multiple sites (primary 
site, The Hospital for Sick Children (SickKids) in Toronto) which 
includes individuals from varying ancestries (see online supple-
mental table 1). The primary goal of this prospective cohort 
study is to identify genetic variants contributing to ASD and 
the cellular processes involved. Individuals with autism, as well 
as their immediate family members (eg, parents, siblings), are 
eligible to participate. Voluntary enrolment involves providing 
a biological sample for genomic analysis (ideally trio analysis, 
but can involve singleton and multiplex analysis) and completing 
standardised questionnaires to supply clinical presentation 
information (ie, phenotype data).12 25 When the genomic anal-
ysis is complete, the results are disclosed to the family via the 
research study team. The consented genomic and phenotypic 
data are uploaded to the MSSNG database, which is a cloud-
based controlled-access data repository that provides a power 
tool for genomic analysis across the autism study population.12 
The cohort described in this paper are those research families 
who underwent WGS analysis and received a genetic result from 
genetic counsellors or clinicians. All participants consented to be 
in the study which allows for publication of results.

Disclosure of research results process
The primary research findings generated from the WGS analysis 
are genetic variants related to autism or NDD. Variants are inter-
preted using the ACMG variant classification framework with 
five variant classifications: pathogenic, likely pathogenic, variant 
of uncertain significance (VUS), likely benign and benign.26 The 
study reporting protocol focuses on genes associated/potentially 
associated with autism or NDD.12 Since the genetic findings are 
not confirmed in a clinically certified laboratory prior to disclo-
sure to participants, the ACMG variant classification termi-
nology was modified to differentiate between research-grade 
and clinical-grade results: ‘significant’ replacing ‘pathogenic’.26 

Research reports are generated if VUS, likely significant variants 
and significant variants are identified.

A research report is generated for the study participant with 
autism using a team of genetic counsellors, genomic analysts, 
investigators and a clinical laboratory geneticist. For the disclo-
sure, the family is contacted by the recruiting site to offer either 
an in-person or videoconference meeting with the genetic coun-
sellor or study clinician. The families are counselled about their 
genetic results using a previously outlined approach to commu-
nicating complex information.3 It is emphasised that the research 
results and their interpretation are based on current technology 
and understanding. As new genomic tools and algorithms are 
developed and scientific knowledge advances, the family may 
get updated information about their WGS results, including 
changes to variant classifications and newly reported variants. 
During the result disclosure, the research genetic counsellors 
asked the participant and family how they felt about receiving 
the research results. Their response was noted in the research 
file as direct quotes and/or paraphrased and compiled for this 
manuscript during the chart review process. Following the 
disclosure of results, the genetic counsellors or study clinician 
facilitate referrals to genetics centres for clinical confirmation of 
any significant variants through a Clinical Laboratory Improve-
ment Amendments (CLIA) or Accreditation Canada Diagnostics 
certified laboratory.

Timeframe of WGS results disclosure
We reviewed all disclosed WGS research reports from January 
2012 (when WGS was first implemented) to November 
2023; 202 families received results where a genetic variant 
was disclosed. Here, we describe individuals with autism who 
received likely significant or significant results relevant to ASD. 
In addition, we include a few examples of VUS findings that, 
based on clinical interpretation, are likely to be contributory but 
require additional supporting evidence.

Categorisation of clinical utility
Using the ACMG description of clinical utility of genetic testing14 
and related publications in the NDD/autism population,11 17–19 
we designated three outcome categories: (1) genetic diagnosis, 
(2) counselling benefits and (3) support to family. Descriptions 
of each category are provided in the Results section. For each 
family who received genomic sequencing results, we reviewed 
the research report and any available summary note from the 
result disclosure to determine if the result impacted each clinical 
utility category. A single genetic finding can have multiple down-
stream outcomes; therefore, it can count towards more than one 
category. Two of the researchers (TS, NH) independently catego-
rised each case to ensure reliability.

RESULTS
Of the 202 WGS results returned, 100 (49%) had at least one 
(likely) significant genetic variant relevant to ASD (table  1). 
It is important to note that this should not be interpreted as 
the cohort’s diagnostic yield for WGS, which for this study 
has been previously published12 and is discussed below. The 
demographic data for the 202 individuals with autism included 
76.7% males and 23.3% females (see online supplemental table 
1). The age at enrolment ranged from 11 months to 49 years 
and 8 months, with a mean age of 10 years 2 months and a 
median age of 7 years 9 months. The genetic ancestry of the 
202 families consisted of 73.7% European, 5.9% South Asian, 
2.5% Admixed American, 1.5% African and 1.5% East Asian. 
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Table 1  List of (likely) significant genomic findings in individuals with autism returned to families

Family 
number

Relevant ASD-
related gene or 
locus

Mode of 
inheritance 
of associated 
condition Inheritance

Presumed 
mechanism

Genetic 
diagnosis

Counselling 
benefits

Support to 
family

Additional reported 
findings

1 CHD8 AD De novo LoF Y Y LAMC3*

2 7q11.23 del AD De novo Haploinsufficiency Y Y BRCA2†

3 MYT1L AD De novo LoF Y Y NA

4 KMT2A AD De novo LoF Y Y NA

5 WDFY3 AD De novo LoF Y Y PER2, EIF4E, GAMT, COMT, 
TMLHE

6 SLC6A1 AD De novo LoF Y Y NA

7 CASK XL Unknown LoF Y Y CLTC, TMLHE

8 CHD8 AD De novo LoF Y Y CNTNAP4

9 PTEN AD De novo LoF and dominant-
negative

Y Y NA

10 TET3 AD Unknown LoF Y Y NA

11 MBD5 AD De novo LoF Y Y NA

12 CAPRIN1 AD De novo LoF Y Y Y NA

13 1q21.1-1q21.2 del AD De novo Haploinsufficiency Y Y 6q13 dup

14 SCN2A AD De novo LoF and GoF Y Y ZBBX, TTN

15 15q11.2-q13.1 dup AD Paternal Triplosensitivity Y Y NA

16 SCN2A AD Paternal (mosaic) LoF and GoF Y Y RELN

17 SHANK3 AD De novo LoF Y Y Y AGBL1

18 DNMT3A AD De novo LoF Y Y NA

19 GRIN2B AD De novo LoF and GoF Y Y ATRX

20 MTSS2 AD Unknown, present in 
affected siblings

unknown Y Y NA

21 3q29 del AD De novo Haploinsufficiency Y Y ANK2, HCN1, 3q29 dup

22 ASXL3 AD De novo LoF Y Y NA

23 NLGN3 XL Maternal LoF Y Y NA

24 NLGN3 XL Maternal LoF Y Y SCN2A

25 RORB AD De novo LoF Y Y NA

26 22q11.21 dup AD Paternal Triplosensitivity Y Y LZTR1

27 SHANK3 AD De novo LoF Y Y Y NA

28 NAA15 AD De novo LoF Y Y RBM10, PCDH19

29 NRXN1 AD and AR De novo LoF Y Y NA

30 CHD8, KMT2E AD, AD De novo, de novo LoF, LoF Y Y NA

31 KMT2A AD De novo LoF Y Y NA

32 16p11.2 del AD De novo Haploinsufficiency Y Y FXN repeat

33 CHD8 AD De novo LoF Y Y NA

34 SCN2A AD De novo LoF and GoF Y Y SNTG2

35 PTEN AD De novo LoF and dominant-
negative

Y Y NA

36 SLC6A1 AD De novo LoF Y Y NA

37 NF1 AD Unknown LoF Y Y NA

38 CTNNB1 AD De novo LoF Y Y NA

39 ARID1B AD De novo LoF Y Y NA

40 SHANK3, 16p13.11–
16 p12.3 dup

AD, AD De novo, paternal LoF, triplosensitivity Y Y NA

41 SOX5 AD De novo LoF Y Y 10q11.2-10q11.23 dup

42 SYNGAP1 AD Unknown LoF Y Y NA

43 CUL3 AD De novo LoF Y Y NA

44 KMT2E AD Unknown LoF Y Y MAP1A

45 TRIP12 AD De novo LoF Y Y FGA†

46 PTEN AD De novo LoF and dominant-
negative

Y Y CLN8*

47 KMT2A AD De novo LoF Y Y Y ADORA2A, ARNT2

48 8q22.1 del AD De novo Haploinsufficiency Y Y 1q21.1 dup, GPHN

49 EHMT1 AD De novo LoF Y Y MYH4

Continued
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Family 
number

Relevant ASD-
related gene or 
locus

Mode of 
inheritance 
of associated 
condition Inheritance

Presumed 
mechanism

Genetic 
diagnosis

Counselling 
benefits

Support to 
family

Additional reported 
findings

50 FMR1 XL Maternal LoF Y Y NA

51 TLK2 AD De novo LoF Y Y NA

52 SHANK3 AD De novo LoF Y Y Y NA

53 ZEB2 AD De novo LoF Y Y NA

54 ASH1L AD De novo LoF Y Y NA

55 WAC AD De novo LoF Y Y CEP135*

56 FOXP1 AD De novo LoF Y Y NA

57 NF1 AD De novo LoF Y Y NA

58 SMARCC2 AD De novo LoF Y Y NA

59 NF1 AD De novo LoF Y Y TCF12

60 CHD8 AD De novo LoF Y Y NA

61 KDM3B AD De novo LoF Y Y NA

62 CHD2 AD De novo LoF Y Y NA

63 NF1 AD Unknown LoF Y Y NA

64 SCN2A AD De novo LoF and GoF Y Y ANK3

65 NLGN4X XL Maternal LoF Y Y NA

66 22q11.2 dup AD Unknown Triplosensitivity Y Y TMLHE

67 ADNP AD De novo LoF Y Y NA

68 MECP2 XL De novo LoF Y Y NA

69 POGZ AD Unknown LoF Y Y NA

70 NEXMIF XL De novo LoF Y Y RFX3

71 KMT2A AD De novo LoF Y Y Y NA

72 CNOT3 AD De novo LoF Y Y Y KDM6B

73 SHANK2 AD De novo LoF Y Y Y ATP1A3

74 SET AD De novo LoF Y Y NA

75 TCF12 AD De novo LoF Y Y NA

76 DDX3X XL De novo LoF and dominant-
negative

Y Y NA

77 CHD8 AD De novo LoF Y Y TAOK2, KIF1A

78 SCN2A AD Unknown LoF and GoF Y Y NA

79 PTEN AD De novo LoF and dominant-
negative

Y Y NA

80 KDM6A XL De novo LoF Y Y NA

81 KCNQ2 AD De novo LoF, GoF, and 
dominant-negative

Y Y NA

82 CDC42 AD De novo LoF, GoF, and 
dominant-negative

Y Y STXBP5

83 17q11.2 dup AD Paternal Triplosensitivity Y Y 20q11.21 dup, TRAPPC9, 
OPHN1, PCDH15

84 NSD1 AD Unknown LoF Y Y NA

85 NLGN4X XL De novo LoF Y Y TMLHE

86 TLK2 AD Unknown LoF Y Y DYRK1A

87 SLC6A1 AD Unknown LoF Y Y POMT1*

88 ANKRD11 AD Unknown LoF Y Y NA

89 ASH1L AD De novo LoF Y Y Y NA

90 22q11.21 dup AD Paternal Triplosensitivity Y Y NA

91 SHANK3 AD De novo LoF Y Y NA

92 KCNB1 AD De novo LoF and dominant-
negative

Y Y KDM5B

93 PTEN AD De novo LoF and dominant-
negative

Y Y VIL1

94 ASH1L AD De novo LoF Y Y Y POLA2, 9q34.11q34.12 dup

95 CHD8 AD De novo LoF Y Y NA

96 CHD2 AD De novo LoF Y Y NA

97 22q11.2 del AD De novo Haploinsufficiency Y Y F9†

Table 1  Continued
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In 12.4% of families, the ancestry analyses from two genomic 
prediction tools were discordant, and no self-reported ancestry 
data were available, so the ancestry was categorised as ‘Other.’ 
Two per cent were ADMIXED ancestry, where the parents are 
of different genetic ancestries, and for one family, the ancestry 
data were not available (see online supplemental table 1). 
Among the 100 families, all results had an impact on outcome 
categories 1 and 2: genetic diagnosis and counselling benefits. 
In 11% of families, the genetic results also provided support to 
the family by providing them with a gene name to form social 
support networks and connect with scientists and gene-specific 
research.

Category 1: genetic diagnosis
Receiving a genetic diagnosis that ends the diagnostic odyssey, 
informs medical management and prognosis, and treatment is a 
potential benefit of genetic testing in autism.

De novo SHANK3 variant–NM_001080420.1: c.3727dup 
(p.Ala1243Glyfs*69)
In an 18-year-old male patient with autism, intellectual disability, 
seizures and generalised anxiety disorder, clinical CMA and gene 
panel testing were uninformative. When he was 23 years old, 
WGS analysis through this study identified a de novo, recur-
rent frameshift variant in SHANK3 (MIM: 606230) associated 
with Phelan-McDermid syndrome (PMS (MIM: 606232)). The 
research result was clinically confirmed and provided a unifying 
diagnosis for the participant’s clinical presentation. This genetic 
diagnosis provided guidance on how to monitor and manage 
associated features. For instance, a consensus guideline recently 
published advised on the diagnosis and treatment of seizures in 
patients with PMS.27 This includes recommendations for brain 
imaging (eg, MRI) for every individual with PMS having neuro-
logical symptomology. In this participant, his seizures were 
already evident, and he is regularly followed up by his neurolo-
gist. For some seizure conditions, condition/gene-specific infor-
mation regarding medication effectiveness may be available. 
For PMS, the guidelines recommend general seizure treatment 
protocols as there is currently no evidence of a specific medi-
cation that works best for all patients with PMS and no contra-
indicated drugs. The parents expressed that receiving a genetic 
diagnosis helped them understand their child better. Prior to 
the diagnosis, they felt they were ‘floating with nothing to hold 
on to and with this diagnosis, they now have a starting point.’ 
They expressed that this knowledge gave them a sense of control 
prompting them to plan their child’s future differently, especially 
financially.

De novo ARID1B variant–NM_001346813.1: c.1044_1068del 
(p.Ala350Metfs*11)
After exhausting all clinically available tests (CMA, fragile X 
testing and MED12 (MIM: 300188) gene sequencing), a partic-
ipant with high suspicion of an underlying genetic aetiology 
was enrolled. The 15-year-old male patient presented with a 
provisional diagnosis of autism with a history of developmental 
delay, speech delay, febrile seizures, sensory hypersensitivity and 
strong food preferences. WGS identified a de novo variant in 
ARID1B (MIM: 614556), associated with Coffin-Siris syndrome 
(MIM: 135900). Following results disclosure, the participant 
was reassessed by a clinical geneticist, and the ARID1B variant 
was confirmed clinically to be pathogenic, providing the family 
with a new clinical and molecular diagnosis. As a result, the 
clinical team reviewed the clinical management guidelines for 
Coffin-Siris syndrome and ordered screening for associated 
symptoms, including abdominal imaging to rule out associated 
renal anomalies. For this participant, the ultrasound came back 
normal, but could have uncovered a hidden feature of the condi-
tion. With this molecular diagnosis, the primary care provider 
can use anticipatory guidelines (eg, vision, dental, scoliosis) to 
monitor the general health and well-being of this patient. Here, 
having a genetic diagnosis can inform additional surveillance and 
assessments, primarily unrelated to ASD but still impactful to the 
well-being of the participant.

De novo GRIN2B variant–NM_000834.3: c.2515G>A 
(p.Glu839Lys)
In a 31-year-old male patient with autism, attention deficit 
hyperactivity disorder (ADHD), obsessive-compulsive disorder 
with Tourette syndrome and intellectual disability, WGS analysis 
identified a de novo missense variant in GRIN2B (MIM:138252). 
Variants in GRIN2B are associated with GRIN2B-related neuro-
developmental disorder (MIM: 613970, 616139), which is 
characterised by variable intellectual disability, muscle tone and 
motor differences, and behavioural differences including autism. 
Approximately 50% of individuals also have seizures.28 Over 
several years, this participant was noted to have episodes of 
incontinence, not being able to chew and appearing slow and 
tired. He was assessed by a neurologist, but the underlying aeti-
ology of these episodes was not identified. After receiving this 
result, the participant was assessed by a clinical geneticist, and 
the GRIN2B variant was clinically confirmed. In addition, the 
participant’s neurologist was notified of the new genetic diag-
nosis as the additional GRIN2B-related information may help 
clarify the seizure query. Whether these episodes are confirmed 
to be seizures or another clinical feature, this participant 
contributes to the growing knowledge about the presentation 

Family 
number

Relevant ASD-
related gene or 
locus

Mode of 
inheritance 
of associated 
condition Inheritance

Presumed 
mechanism

Genetic 
diagnosis

Counselling 
benefits

Support to 
family

Additional reported 
findings

98 ASH1L AD De novo LoF Y Y Y TSHZ3, TNR

99 MEIS2 AD Unknown LoF Y Y KCNC1

100 TRRAP AD De novo Unknown Y Y PKP2†, 9q34.11 dup

*Carrier status result not relevant to ASD.
†Significant incidental finding unrelated to ASD or NDD.
AD, autosomal dominant; AR, autosomal recessive; ASD, autism spectrum disorder; del, deletion; dup, duplication; GoF, gain-of-function; LoF, loss-of-function; NA, not applicable; 
NDD, neurodevelopmental disorder; XLD, X-linked dominant; XLR, X-linked recessive; Y, yes.

Table 1  Continued
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of GRIN2B-related disorder. Emerging research on therapies for 
GRIN-related disorders showed promise with dietary supple-
mentation. For some patients with variants in GRIN2B, taking 
L-serine supplements improved behaviour, development and/or 
seizure frequency, but additional clinical trials are needed to fully 
understand the benefits and safety of this therapy.29

De novo CNOT3 variant–NM_014516.3: c.1473_1474del 
(p.Gly493Thrfs*21)
After being part of the study for 13 years, a male participant 
with autism, developmental delay/intellectual disability, limited 
verbal communication, obesity, macrocephaly, distinctive facial 
features and hypothyroidism received a genetic diagnosis at 
age 18. The WGS analysis identified a novel de novo frame-
shift variant in CNOT3 (MIM: 604910), a gene implicated in a 
newly recognised condition called CNOT3-associated neurode-
velopmental syndrome (MIM: 618672). The condition was first 
characterised in 2019 where 16 patients with a similar presen-
tation were described with de novo variants in CNOT3.30 This 
participant’s neurodevelopmental phenotype is explained by this 
finding. However, it is not currently clear whether this finding 
fully explains his other features such as macrocephaly and 
hypothyroidism. As more individuals with CNOT3 variants are 
described, we may learn of more associated features. This story 
highlights that even with newer technology like WGS to uncover 
previously unidentifiable variants, the immediate medical impact 
for this family is limited. However, families like this one, where 
the participant is now an adult, are valuable contributors to the 
growing understanding of gene-specific conditions as autistic 
children age. The parents expressed that this result provided 
closure, ending their diagnostic odyssey.

Category 2: counselling benefit
Given that the aetiology of autism is multifactorial, with many 
genes implicated, and varying levels of contribution, knowing 
the individual variant involved is helpful in all aspects of genetic 
counselling.

ASXL3 variant inherited from mosaic mother–NM_030632.1: 
c.4678C>T (p.Arg1560*)
A family with a 10-year-old male child diagnosed with autism, 
global developmental delay, hypotonia and photorefractive kera-
tectomy enrolled looking for an underlying aetiology for their 
son’s constellation of symptoms. Clinical genetic examination 
including CMA and fragile X testing was negative. WGS identi-
fied a nonsense variant in ASXL3 (MIM: 615115), a gene where 
loss-of-function variants cause Bainbridge-Ropers syndrome 
(MIM: 615485). The variant was present in a mosaic state in 
the mother, who had no reported clinical diagnoses, but did 
have a history of speech delay. Given the inheritance and report-
edly discordant clinical presentation, the variant was reported 
out by the research team as a VUS, but a referral for clinical 
follow-up was suggested. On assessment by a clinical geneticist, 
the participant’s clinical features aligned with Bainbridge-Ropers 
syndrome, and the ASXL3 variant was clinically confirmed 
and classified as pathogenic. Knowing the Bainbridge-Ropers 
syndrome diagnosis allowed the clinical team to counsel the 
family on the likelihood of recurrence based on a mosaic inher-
itance model. Since the proportion of gametes in the mother 
that carry this variant is unknown, the family was counselled 
that the chance of having another child with Bainbridge-Ropers 
syndrome is up to 50%.

EP300 deletion inherited from mother with autism–
NC_000022.11: g.41113623_41129006del
When a child is diagnosed with autism in our study, some parents 
pursue an autism assessment for themselves. Here, the mother 
received an autism diagnosis following her daughter’s diagnosis. 
WGS analysis of the 19-year-old daughter with autism, ADHD, 
mild Tourette syndrome and chronic ankle weakness identified 
a 15 kb deletion impacting multiple exons of EP300 (MIM: 
602700). The deletion in the daughter was maternally inherited; 
however, this same deletion was found to be a de novo event 
in the mother (ie, not inherited). Variants in EP300 are associ-
ated with Rubinstein-Taybi syndrome (MIM: 613684). Individ-
uals with this condition have a range of clinical presentations 
including short stature, distinctive facial features and autism. 
This research finding prompted assessments to look for features 
associated with Rubinstein-Taybi syndrome in both the mother 
and daughter. Follow-up clinical testing confirmed this deletion 
as pathogenic in both the proband and mother, and a geneticist 
assessment found that they both do not have the typical features 
associated with Rubinstein-Taybi syndrome. The knowledge that 
this deletion is pathogenic and likely contributed to the autism 
in the family provides the daughter with refined genetic coun-
selling information. The de novo status in the mother provides 
insights for other family members as well.

Category 3: support to family
Having a genetic diagnosis allows families to connect with one 
another and build a social support network to share experi-
ences. Identifying families with rare variants in shared genes also 
allows researchers to uncover biologically relevant pathways and 
develop molecular intervention targets.

De novo ASH1L variant–NM_018489.2: c.4902_4903del 
(p.Ser1635Cysfs*18)
WGS of a 7-year-old male child with autism, oromotor apraxia 
and history of hypotonia, delayed fine and gross motor skills 
identified a de novo variant in ASH1L (MIM: 607999). The 
reported associated features included intellectual disability, 
autism and a broad range of additional manifestations. The 
limited resources prompted the mother to seek out other fami-
lies with this ASH1L-associated condition. She wanted to learn 
what this would mean for her young son and meet other indi-
viduals with ASH1L variants. The family formed a non-profit 
organisation connecting ASH1L families from around the world, 
as well as researchers studying the gene (https://www.care4ash1l.​
com/). The organisation’s goal is to advance the understanding 
of the molecular mechanism of ASH1L to develop tailored thera-
peutics. Beyond creating an online community to share personal 
experiences and resources, the organisation has raised funds to 
support additional research, including stem cell studies, clinical 
phenotype and natural history studies, and functional work.

De novo SHANK2 variant–NM_012309.5: c.2521C>T 
(p.Arg841*)
In an 18-year-old male patient with autism, WGS identified a 
de novo nonsense variant in SHANK2 (MIM: 607999). This 
gene is a member of the SHANK family, which encodes synaptic 
proteins with important roles in the signalling pathway in the 
brain. Following the finding of SHANK3 in idiopathic autism,31 
our research group followed to implicate SHANK genes in the 
susceptibility to autism.32 33 For this family, the variant was clin-
ically confirmed and provided an answer for why their son had 
autism. The question of how SHANK2 variants impact neuron 
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biology remained unclear, which our team investigated using 
induced pluripotent stem cells (iPSCs). The family consented 
to participate in this iPSC study and provided blood samples, 
which were used to generate nerve cells with and without the 
SHANK2 variant. The functional impact of the variant on 
neuronal structure, function and signalling was measured. 
Along with a different SHANK2 variant contributed by another 
research family, the study found that neurons from participants 
with SHANK2 variants were overconnected (increased dendrite 
length and complexity, and synapse number) and overactive 
(increased frequency of spontaneous excitatory postsynaptic 
currents) compared with control neurons.34 This study provides 
insight into the pathophysiology of SHANK2 variants in neuro-
developmental conditions, which may inform research into 
targeted supports for these families.

De novo AMOTL1 variant–NM_130847.2: c.470G>A 
(p.Arg157His)
For some individuals with ASD and a known genetic syndrome, 
undergoing genomic analysis can uncover additional genetic 
contributions and prompt research. This was the case for a 
7-year-old female child with Beckwith-Wiedemann syndrome 
(BWS (MIM: 130650)) due to hypomethylation on chromosome 
11p15.5 at IC2. Her clinical team felt that her complex medical 
history and uncharacteristic clinical presentation was not fully 
explained by the BWS diagnosis. Research WGS analysis iden-
tified a de novo missense variant in AMOTL1 (MIM:614657), 
which was of uncertain significance at the time. There were 
three reports in the literature of patients with missense vari-
ants in AMOTL1, including the specific variant identified in our 
participant.35–37 The phenotype described in the three patients 
overlapped with our participant, prompting us to reach out 
to the researchers and contributing to a case series character-
ising a new Mendelian condition in patients with variants in 
AMOTL1.38 These cohort studies also inform the development 
of management guidelines. For individuals with AMOTL1 vari-
ants, several screening recommendations were suggested: exam-
ination for evidence of orofacial clefting and velopharyngeal 
insufficiency, regular eye examinations to evaluate for myopia, 
audiology examinations for hearing loss, echocardiograms and 
ECG for congenital heart disease and arrhythmia, screening for 
and aggressively treating constipation, evaluation of liver func-
tion, scoliosis and obtaining a developmental assessment.

DISCUSSION
We present examples of the clinical utility of genetic testing in 
autism. Many of the individuals we highlighted received results 
in adulthood. These individuals may have been assessed in a 
genetics clinic during childhood but did not receive a genetic 
diagnosis, possibly due to fewer genetic testing options or 
limited genetics knowledge available at the time. The advent of 
sequencing technologies has improved diagnostic rates for the 
broader NDDs (including ASD). The diagnostic yield ranges 
from 5% to 25% for CMA,9 30–43% for exome sequencing11 
and 30–50% for WGS.13 Studies focusing on the autism popula-
tion specifically have shown that WGS has a conservative diag-
nostic yield of 14%12 or a diagnostic rate twofold more than 
CMA and threefold more than WES.13 Although the implemen-
tation of WGS has been shown to streamline genetic diagnostic 
workflow and reduce the diagnostic odyssey, it is not yet estab-
lished as the first-tier test for NDDs and is primarily offered in 
research settings.12 39–41 As illustrated by the examples presented 
here, WGS is a comprehensive test capable of detecting a range 

of diagnostic variants, providing clinical utility to families and 
should be considered as a genetic test for patients with autism. 
Moreover, through our examples, we show the benefit of 
receiving a genetic diagnosis in adulthood not only for improved 
medical management but also for improved understanding of the 
natural history and variable presentation of a genetic condition.

Based on a 2022 review by Stafford and Sanchez-Lara, several 
studies have demonstrated that results from genetic testing in 
patients with autism, primarily using CMA results and WES, 
have provided a genetic diagnosis, which informed screening for 
co-occurring conditions and prompted medical interventions.17 
In some cases, by identifying a genetic aetiology, unnecessary 
medical assessments and interventions can be avoided.8 42 43 
In three of the illustrative cases presented (GRIN2B, CNOT3, 
EP300), the individuals are contributing to a better understanding 
of the phenotypic spectrum of their associated conditions. For 
rare genetic conditions or newly described associations, manage-
ment guidelines and prospective information are likely unavail-
able. As the number of individuals with shared genetic findings 
is identified, there is an opportunity to collect more phenotypic 
data to better understand the clinical expression as individuals 
age. This underscores the importance of capturing the pheno-
typic expression of a genetic variant in a ‘bonafide’ ASD-relevant 
gene. To address the need for a standardised approach for autism 
gene curation, a team of multidisciplinary experts in autism and 
clinical genetics developed the EAGLE (Evaluation of Autism 
Gene Link Evidence) framework that uses and expands on Clin-
Gen’s pre-existing gene-disease curation process.44 This frame-
work was developed to evaluate the relevance of variations in 
a specific gene to the autism phenotype.4 It combines reported 
genotype and phenotype information including the specific 
assessments used to diagnose autism.

Autism has substantial phenotypic and genetic heterogeneity 
as our examples illustrate. Many studies have shown that autism 
results from a combination of individually rare, underlying 
genetic aetiologies.5 11 12 45 This makes genetic counselling in 
the autism context complex.3 Knowing the specific genetic aeti-
ology can inform genetic counselling about inheritance patterns, 
variability, expressivity and prognosis. Having gene-specific 
information can help clinicians connect families to available 
interventions (eg, screening, treatment) and clinical trials. For 
families, this information allows them to connect to community 
networks and support groups to learn about new research and 
therapies for their specific genetic diagnosis. For autism, early 
intervention has been shown to improve outcomes,46 and the 
early identification of genetic variants can enable preparation 
for both families and healthcare providers. Having genetic infor-
mation is important for informed decision-making not only 
for the individual but also for extended family members.8 43 47 
When no significant variants are identified or VUS findings are 
disclosed, the underlying genetic contribution to the autism in 
the family remains unclear. This is common and underscores the 
complexity inherent in autism.3 In these situations, clinicians 
can rely on empirical studies to provide families with additional 
information. The identification of VUSs provides an opportu-
nity for clinicians to collect additional phenotypic data and/or 
prompt additional research (eg, functional analysis, iPSC studies) 
to clarify the significance of the findings.

One way to look at the clinical utility of genetic testing is 
to evaluate treatment options that ultimately improve health 
outcomes among the autism population. The discovery of 
rare genetic variants associated with genetic conditions is the 
essential first step in developing novel therapies for precision 
medicine.48 49 Currently, numerous clinical gene therapy trials 
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are underway for NDD/ASD-related conditions. In Angelman 
syndrome (MIM: 105830), antisense oligonucleotide (ASO) 
therapy called GTX-102 has been designed to decrease expres-
sion of UBE3A-AS and reactivate expression of paternal UBE3A 
(MIM:601623). Data from the Phase I/II suggested functional 
gain over time and multidomain improvement in the Bayley-4 
and Angelman Severity Assessment measures in treated indi-
viduals. ASO-based and adeno-associated virus-9 (AAV9)-
based therapies for Dravet syndrome (MIM: 607208) are also 
underway. Phase I/II study data for ASO-based therapy, called 
STK-001, indicate a reduction in seizure frequency and improve-
ments in various measures of cognition and behaviour. Among 
others, gene therapies for Rett syndrome (MIM: 300005) and 
other developmental and epileptic encephalopathies including 
CDKL5 deficiency disorder (MIM: 300672), STXBP1-related 
disorder (MIM: 612164) and SCN2A-related disorder (MIM: 
613721, 607745) are also in development.

Limitations of this study
We evaluated genetic results for clinical utility and benefit to 
an individual family. We did not assess the potential harms of 
receiving these findings (noting, however, no overt harm was 
observed). Most individuals who received results were of Euro-
pean ancestry (expected proportion of individuals of this back-
ground in Ontario is 66%), although other ancestry groups were 
represented. We did not explore potential cultural differences 
in response to genetic findings. While we share some family 
perspectives on receiving results, we did not systematically 
collect these experiences from all families that received results.

Summary
We present examples of families who have received a genetic 
diagnosis and discuss our experiences of genetic testing in the 
autism population. As our understanding of the genetic contri-
butions to autism grows, there is potential to aid in early detec-
tion, inform the development of targeted supports and therapies, 
and provide improved care and outcomes for individuals with 
autism and their families.
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